Consequences of combining siRNA-mediated DNA methyltransferase 1 depletion with 5-aza-2′-deoxycytidine in human leukemic KG1 cells
نویسندگان
چکیده
5-azacytidine and 5-aza-2'-deoxycytidine are clinically used to treat patients with blood neoplasia. Their antileukemic property is mediated by the trapping and the subsequent degradation of a family of proteins, the DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) leading to DNA demethylation, tumor suppressor gene re-expression and DNA damage. Here we studied the respective role of each DNMT in the human leukemia KG1 cell line using a RNA interference approach. In addition we addressed the role of DNA damage formation in DNA demethylation by 5-aza-2'-deoxycytidine. Our data show that DNMT1 is the main DNMT involved in DNA methylation maintenance in KG1 cells and in mediating DNA damage formation upon exposure to 5-aza-2'-deoxycytidine. Moreover, KG1 cells express the DNMT1 protein at a level above the one required to ensure DNA methylation maintenance, and we identified a threshold for DNMT1 depletion that needs to be exceeded to achieve DNA demethylation. Most interestingly, by combining DNMT1 siRNA and treatment with low dose of 5-aza-2'-deoxycytidine, it is possible to uncouple DNA damage formation from DNA demethylation. This work strongly suggests that a direct pharmacological inhibition of DNMT1, unlike the use of 5-aza-2'-deoxycytidine, should lead to tumor suppressor gene hypomethylation and re-expression without inducing major DNA damage in leukemia.
منابع مشابه
Gene Expression Profiling of Human Myeloid Leukemic MV4-11 Cells Treated with 5-Aza-2’-deoxycytidine
The pyrimidine analog, 5-aza-2’-deoxycytidine (5-aza-dC) is a DNA methyltransferase inhibitor that triggers DNA demethylation leading to the reactivation of epigenetically silenced tumor suppressor genes. To understand the shift in gene expression which mediates the beneficial 5-aza-dC effects in leukemia, we have treated human myeloid derived leukemic cells with 5-aza-dC. Target genes were ide...
متن کاملEffects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line
Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...
متن کاملDNA methyltransferase 1 knockdown activates a replication stress checkpoint.
DNA methyltransferase 1 (DNMT1) is an important component of the epigenetic machinery and is responsible for copying DNA methylation patterns during cell division. Coordination of DNA methylation and DNA replication is critical for maintaining epigenetic programming. Knockdown of DNMT1 leads to inhibition of DNA replication, but the mechanism has been unclear. Here we show that depletion of DNM...
متن کاملMutagenicity of 5-aza-2'-deoxycytidine is mediated by the mammalian DNA methyltransferase.
The cytosine analog 5-aza-2'-deoxycytidine has been used clinically to reactivate genes silenced by DNA methylation. In particular, patients with beta-thalassemia show fetal globin expression after administration of this hypomethylating drug. In addition, silencing of tumor suppressor gene expression by aberrant DNA methylation in tumor cells may potentially be reversed by a similar regimen. Co...
متن کاملIncorporation of a potent antileukemic agent, 5-aza-2'-deoxycytidine, into DNA of cells from leukemic mice.
5-Aza-2'-deoxycytidine administered at a daily dose of 1.5 mg/kg increased the life-span of P388 leukemia-bearing BALB/c X DBA/2 F1 mice by 5 times and that of second generation lymphoma-bearing AKR mice by 2.5 times. Higher doses (total dose, 20 mg/kg) led to favorable results when administered in two portions on Days 4 and 5 after the s.c. inoculation of leukemic cells. The same total dose gi...
متن کامل